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Abstract

We analvze the long time behaviour of fully discrete solutions to a one-dimensional
nonlinear viscoelastic problem. It is shown that these approximations which are
found by a continuous time Galerkin method converge to a steady state. The possi-
ble numerical steady states are characterized and in particular their high degree of
dependence on initial data and mesh design is explained. Computational results are
included which show the above dependence and indicate that the numerical sclutions
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1. Introduction

Recently, attempts have been made at rinimizing nonconvex stored energy function-
als by means of studying the steady stazes of auxiliary time dependent problems. In
parts of the literature, the class of meihods is termed Dynamic Relaxation. This
technique involves solving a time deper.ient P.).[i. and marching to a steady state
which hopefully is a near minimizer. We refer to |1}, [2], {3], [4], |5], [6] and the
references there. In this paper we will stady the long term behaviour of certain fully
discrete solutions to

(/” (0(Uz) + Ust)s in (0,1) x (0, 00)

U(0,t) =0, t>0 (1.1)
(o(U,) + U )(1.t) or U 1,t) =0, t>0 '
U(z,0) = Up(z). U(z,0 = Vo(z) in (0,1)

which commands some interest in its own right. (1.1) models the one-dimensional
motion under zero body forces of a nonlinear viscoelastic material of rate type, some-
times called the Kelvin-Voigt model. U(z.t) denotes the displacement at time t of a
particle having position z in some reference configuration. See also [7]. It is hoped
then that for ¢ sufficiently large, U will approach a local minimum and satisfy the
Fuler-Lagrange equations associated with the minimization problem.

The asymptotic behaviour of (1.1) was -he {ocus of two studies, {8] and [9], in which
it was shown thal weak solutions exist g.obally provided Uy € W', V, € L*(0,1)
and the sign of the stresses for large s is -2stricted as follows: o : It — R,

IM >0, |s|> M = sofs) > 0. (1.2)
Furthermore the solutions converge strongly to (local) equilibrium, as t — oo:

U — 0, in HY0,1), o(l7;)+ Uy — 0 in H*0,1)

U(z,t) > Seo(z) boundedly a.e., 0(Sy) =0 a.e.,

and when a dynamic stability criterion

—(8) > 09 >0 for 0(3) =0 (1.4)
ds

is satisfied, the asymptotic states are metastable in the sense that if the strains are
perturbed by small amounts except on a set of measure ¢, then the solution will
approach an equilibrium with stiain equal "o the unperturbed strain everywhere but
possibly the same exceptional set. (-, ¢t) converges in the sense of generalized curves,




[10] and [11], i.e. there exists a parametrized family of probability measures
{V2}ze0) on R such that g(u.(.t)) < vg,g > in L®(0,1) for each continuous
g. Here, < v,g(s) > denotes the value of a probability measure v for a continuous
function g on the state domain.

1t has been observed, e.g. by Silling |3], that dynamic relaxation as a computa-
tional method for a similar two-dimensional problem may yield numerical solutions
exhibiting different phases that can be identified with appropriate ranges of values of
the deformation gradient. In mixing regions between two elliptic phases. the gradients
become discontinuous and the solution was observed to be highly mesh dependent.

We are here interested in studying (1.1) when ¢ is not a monotone increasing
function so that the stored-energy functional

[y(v) = /(;11,()(1)')d:n (1.5)

is not convex. In general there are thus infinitely many solutions to the corresponding
equtlibrium problem:

{o(u'(z))} =0 (1.6)
subject to mixed, Dirichlet and traction boundary conditions
v(0) = fo and o(v')(1) =P (1.7a)
or Dirichlet boundary conditions
v(0) = fo and u(1) = f; (1.7b)

¥ is a real-valued function in one variable: ¥(v')(z) = f”' (s)ds and is defined
as follows. Let s < 8 < sy, 0 < a < (sy—sp)/2and Ay, Ay, A3 > 0. We take

§=fy— fo =P =0. Let ¥ be a double well:
1/)(8) > l/)(SL) = ‘([J(SU) = (npoe 7/_' S1,SU,
Y(s) > Ai(s —s)? fo. |s—s.|<aq,
P(s) 2 Ai(s - su)? for |s—sp|<a, (1.8)
1/)(5 > /\15:2 for s +a<s<sy— &,
As(s = 8)2 > (s) > Aa(s — §)® for s¢[sp— & sp+ &l

Iy is well defined on H'. Collins, Kinderlehrer, and Luskin [12] noted that the vari-
ational principle inf g1 I, (v) where v satisfies (1.7b) may have nonunique limits for
minimizing sequences as well as nonunique associated Young measure (the probabil-
ity measures mentioned above), [11]. The simplest limit deformation, however, is the
linear function f satisfying (1.7b). In [12] they consider instead minimizing

Jolw) = 1) + [ (o) = f(2))da (1.9)

0




I'igure 1: Energy and Stress as functions of Strain

subject to v(0) = v(1) = 0 with f the unique limit deformation and a unique associ-
ated Young measure
vy =0y, + (1 - )by, (1.10)

where v = (sy — 8)/(sy — s.) and 6, denotes the Dirac delta distribution with sup-
port at z. Note that infpis,.(17) Iy(v) = infyeni Jy(v). The stored energy and the
associated stress-strain law are be depicted in fig. 1 (5 = 0)

Note that, although inf,cp1 J,(v) = 0, there is no minimizer in H!. In [12] it was
shown that minimizing J; over a sequence of (uniform mesh) finite element spaces,
leads to a minimizing sequence wj, such that u) converges in a weak sense to the
unique Young measure in (1.10) as A — 0. u}(z) oscillates (in the limit) between the
energy wells at s = s, and at s = s;, occupying these states in proportions 4y and 1 —7
of the interval, respectively. Double wells of unequal heights can be mcoxporated as
in [12] by shifting 1 by some linear function.

Example 1.1 Lel us characterize, for future use, the solution to the discrete Galerkin,

Euler-Lagrange equations in the simplest case. Let m € N, for h = Y;, o = 0 and

z; = th, I; = (zi-1,%;) for + = 1,---,m. Define the finite element space for the
boundary conditions (1.7a) (fo =§ =0, I = (0,1))

Sp={veC(0,1): v(0) =0 and vl € P (L), t=1,---,m} (1.11)
Then the weak form of the Euler-Lagrange equation (o(u.)); = 0 becomes

Find up € S} such that for all v e S} : /o(uh‘,)vz dz = 0. (1.12)
I

Since un(0) = 0 and up ,;, v, are piecewise constants, we can substitute 3o, o{un - ) (v(zi) —
v(x; 1)) for [,. Now successively testing against m basis functions o' € S} defined by




' (zi) = 1, 9'(z,) = Ofor j # ¢, 1= 1,---,m. one easily see that o(u}) remains the
same constant throughout 1. So uy € C} where

Cr=A{ve Sfio(v,) =0} = {r €S} v, €{s,0,50}}, (1.13)

such that C} consists of 3™ isolated solutions. Any two nonidentical solutions in Ch
h
diftfer by al ieast a positive constant depending on h, s;, and sp.
y | y VL

Example 1.2 In the case of Dirichlet boundary conditions at both endpoints (1.7b),
the discrete equilibria becomne less tangible. With m, h, z; and I; as in the previous

example, define
5}11.0 ={veC(0,1): v(0) =v(1) =0, v € P(L), t=1,---,m} (1.14)

as above we see that o(u,,) is constant P, say. Let 07! (P) = {uy,uq, 13} listed in
ascending order. Let m; denote the numbers of intervals in which u,, = py, 1 = 1,2,3.
Since uy satisfies (1.7b) we get the following constraint

3
Zm,-u; =0, m;>0 for 1=1,2,3.
i=1

The set of possible values for P depends very much on the shape of the stress strain
law. It is clear that o™'(P) = {4} a singleton is not viable, similarly if =!(P) =
{11, 12}, we need p,/uz € @ and m sufficiently large. To explain take a very simple
minded trilinear stress-strain law, such that ¢ has roots sz, 0, and sy; | ¢’ |= A, Thus

As —sp), fors <sp/2
0(5) = */\3, for -5L/2 <s< 3[,/2
/\(3 - SU), for s > Su/z

In one of the two root cases, P = —As;/2 and p = s/2, gy = sy — s1,/2 so that
s /sy must be rational (—s, irreducibly say) and m > p + ¢. In the three root

cases —P[\ € %(—su,~sL) and py; = s, + P/X, py = —P/), and p3 = sy + P/
the constraint of zero mean slope above can be met always by letting m, = 0 and
choosing P/A = —(mys; + mas,)/m. This allows for at least one degree of freedom
in choice for P and thus possible slopes p;, as long as m; > m/4, ¢« = 1,3. It is
particularly interesting that we can allow m, > 0 putting strict lower bounds on m,,
msy. The solutions are still isolated, the P/A values admissible being separated by
dn = ¢(sg,s4)/m amounting to a nearest neighbour distance of the same order in the
set of discrete Galerkin equilibria. Of course, more nontrivial discrete equilibria are
realizable using nonuniform meshes selected appropriately.

Increasing the polynomial degree in the finite element space will likely yield an
ceven wider spectrum of discrete equilibria.




Other forms of damping/dissipation could also be considered for dynamic relax-
ation: thermal (heat diffusion), frictional (including U, in (1.1}), and viscoelastic
of history type (o(U.) depending on the deformation for all previous times through
convolution with a kernel (see Bielak and MacCamy [{13]). Dissipation mechanisms
which will substantially influence behaviour include capillarity (adding a U,,,, term
to (1.1), see Slemrod [15]) and non-local (in space) constitutive relations , see Be-
lytschko and Bazant [5]. These are typically not used in dynamic relaxation with the
exception of Belytschko.

['inally note, that if the energy in contrast is convex, a unique solution is given by
the Luler-Langrange equations and there exist numerical procedures for minimization,
see c.g. [16], and the time dependent P.D).E. was handled, see [17], [18], {19]. If one
uses the Maxwell relation to relax the problems, nonuniqueness of an even larger class
than before arises. Numerical methods exist, cf. [20] and the references there.

Our goal will be to establish the set of conditions under which a class of numerical
methods will yield a long time behaviour with asymptotic states that are (local)
minita of (1.9).

The plan of the paper is as follows. We analyzed what possible numerical steady
states exist for (1.1) already. In the next section, we introduce the continuous time
Galerkin scheme. In section 3, we show that the numerical solution must converge
to one of the steady states (for the specific fully discrete method in section 2). We
report on some of our numerical experiments in section 4 which is followed by some
concluding remarks.




2. Dynamic Relaxation by Continuous Time Galerkin Schemes
with Viscoelasticity

We introduce the continuous time Galerkin (CTG) schemes (see (22 and the refer-
ences there). Let 0 = zp < 7y < ... <2 <4 < ... < T = L, [; = (201, 7).
he =] L], ¢+ 1,---,mand
Sp={x€C(0,1): x(0) =0, x|p€ (L), v=1,,m}.
Let 0 =ty <ty <ty <...,Jp= (tn—li tn)’ ko :{ Jn |’ n=0,1,2,...and
5= {r e C(0,00): 7 |5,€ P(J)}.

Then Sk, = Si®@Sh ={A: A=Y\ x,;7;,\, € Sh, 7, € S, l € N} and we discretize
as follows (CTG):

Find u € S}, and v € S}, such that

((ut - U, X))n =0 VYxe S}lz ® PO(Jn)

2.1
((vey ADn + ((tar +0(us), X)) =0 VA€ SE® Po(J,) .
where u,(-, 0) = uo, = Uy, and v(-, 0) = vy =V,
The inner products are defined by
(v,w) = Jy v(z)w(z) dz
(v, w)n = [, v(t)w(t) dt (2.2)

((v,w)) = fy [y, v(z,)w(z,t) dtdz.

Note that (2.1) can be given the following equivalent finite difference in time formu-

lation Lo undl_pn Wty n
(7 =) xdz = 0, Vx € 5}
) (2.3)
fol( n+l_u A + ( 1 + VJ(U ? f,(lu )Az) dx’ \7'/\ e S’ll,

where w’ = w(t;) for y =n,n+1; w = u,u,, v € S},. One of the fundamental
properties is the followmg energy estimate.




Proposition 2.1 Let u, v e S}, be the solutions of (2.1). Then for any n € N, the
foliowing energy tdentity holds

! 1 '2 tHH . )
_/O(z +P(ug)) dz | / / ul, dtde (2.4)

Proof: Choose x = v, and A == u, in (2.1) to get

1 [1
((u" Uf))u = 5/ l)2 dr “":""’

0

and

0 0

1 1
((we, vo))n = ~((o(us) + wary wzt))n = ,,_/ W(ug)de fpr=! / V/J ul, ditdz.

from which (2.4) follows.

Corollary 2.2 Under the same hypothesis as tn Prop. 2.1,
t, 1
= E0~/ / u?, dzdt (2.5)
a Yo

E(t,) = fol(%iﬂ + Y (u))(z, t,) dz,

where

E() = E(to)

Proof: Sum (2.4) from j =0to j =n — 1.
Ul

We still have to prove existence and uniqueness of solutions to (2.1)

Lemma 2.3 If (u,v) ts a solution to ‘(2.1), then there extsts an M > 0, depending
only on Fy, such that for alln € N

() v lzeny < M
() Mow)leoy <M (2.7)

(lll) Hu"””l(o_l) f M.




Proof: (2.5) yields {{v™}{;2p0,1) < (2E17) and lo(updlniony < Fo from which (1)
and (11) follow. Using (1) and subdividing I according to which of the last four
sets defined in (1.8). u” belongs, the L* norm of u is bounded and (i11) follows by

Poincaré’s inequality.

We then phrase (2.1) as a fixed point problem. Consider solving the CTG problem
on the timeslab Q, = (0,1) < J,.. Define the map & : (S} @ (J.))? -~ (S,@ P (J.))?
as the solution (@/'!, ¢/ 1), given (@, 1), to

Find @2t = Sha P(J,) such that
((@"" ) 00 oy - )

(F M) = (@20 M) = ((o(@2),A2))us VA E S

where @' (z,t) = u?(z) and 27! (z,t,) = v™(z), Vz € (0,1).

k4

This defines a linear system of equations. Lo show there is a unique solution on each
iteration we prove the homogeneous svstem (zero right-hand-side and zero data at
t = t,,) has only the zero solution.

Lemma 2.4 Let & be defined as in (2.8). Then & '(0) = 0.

Proof : With zero right-hand-side in (2.8), let A = @}'" and x = %}'" so that

[y —

1 | B
/ (0" b 1 1)) dz ! / [ W dzdt = 0
0 k J,. JO z

.

[N

and @2} = 0,4t = 0,and 7+ (t,+,) = 0. Now choose A = f){“ to get ((6{“,6,’-" N =
0 and 3" =0 and ! = 0.
(J
Let
R {x €85 @PiJa) s max(ixa ()]l < R)

and M, = supjycpy | 0(s) |- Then & selfmaps By into By for R = M + 1, M being
the constant in (2.7).

Lemma 2.5 let @ be defined as in (2.8). Then ® : By, — BRy,,, provided k, (M7+
k.MZ?) < 1.




. . ~jt1 =1+l
Proof : As in the previous prool. let A @' and x = 9]"" to get

e ) (@), ).

2/
/l( P dr / / V) dtder
/ (v ) dr / / dmdf

SOME -k ME
b
AR O B kl‘// Wl ) idtdz)V?
o that
'i”]”( cO 2oy iy e {/\n(/\l bk M )}'/2 M1

ending the proof.
2
Finally, ® 1s a contraction in some appropriate norm. Let Lo = supjcpryy | a'(s)
and }"‘;‘UH!?;: (v 02))n-
Lemnmna 2.6 Let ® be defined as v (2.5) Then 4k« (0,1) such that
Myl euiig )il e (i - gl (2.9

and

| Do(dr,v0)  Paluarai(t,. 1)“1,2(0,1) “ K|
provided k,lt/zll,, <0y Mu,,n) o By 00 1,2,

[y - a,l]

Proof . Let 6w alt! ' and e 00 @' Then from (2.8),--(2.8),, we get

(6 *\))a =0 VYx€S,
((ces A 4 (620, X)) - Ua(E),) olid),), A))e VAES)
Letting ¥ ¢, and A - 6, we get
‘” <‘ rHl) 2‘7" ])4 ’”(stl,”
< Lo by, “2:”' Il 62 Il

o -
S0t b Ml
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Since N8 l[< kp/* [6:(il, we get
”MI';”S krlnnl’f' ”f&i,z - l};rml

vielding (2.9).

This ¢stablishes the existence and uniqueness of the solution to (2.1) by applying
the contraction mapping principle to (2.8).
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3. Large Time Behaviour of Numerical Solution

We now analyze the behaviour in the large of solutions to Continuous Time Galerkin
numerical method introduced in Section 2.

If we again denote u” = u(¢t,) (and similarly for v™), we next state and prove the
following properties of the sequence {(u",v")}.

Proposition 3.1 Let (u™,v") be the sequence uniquely determined by (2.9) and u
the corresponding discrete function. Then AM > 0, such that

() v

(¢7) le(up)ilerony <M, VneN

o) SM, VneN

(cie) JJullyrony <M, VneN (3.1)
(1v) S5y 1w |? dzdt < Eg
(v) S Jg 'un |2 dzdt - 0 as n — .

Proof: (1) through (iff) merely restate lemma 2.3. Using (2.5) in the limit n — oo
yields (1v) which has (v) as an easy consequence.
d

Corollary 3.2 let (u*,v") satisfy (2.9) and (u,v) be the discrete solution. Then

(1) llwdlezoa) uaellz201) — 0 ast — 0
(3.2)
(11) (o(ul),A;) =0, VA€ S,ll as n — oo

z

Proof: (i) follows from (3.1.v) and Poincaré’s inequality. Since v € S} for each z, v,
is a piecewise constant (v**! — v™)/k. From (2.1) and (3.2 1) it follows that Yw € S}

1
//vwdtdz——*Oasn—»oo
0 “Ju

or .
1

/ A"wdr - 0asn — oo
0




where A" = {v" + v""'}/2. Note that v™*! — vy~ = 2(A™*! — 4")
we have

}‘[((0(“:)”\))" + ((G(Uz)a’\))n—l
= [((uzh)‘:))n + ((uzt,)‘z))n—ll

1 by
--i-/ /\(/ v dt) dz

0 tn—]

n+] 1
= 2 ((uar, A2)); +4/ (A" - A™)A dz.
0

.
a2

From (3.2.1) and (3.3) we have

nt1
fim 3 ((0(uz). 1)), = 0
1=n
But
uz(t) = ul+un(t—t,) forté€ J,uy and
ug(t) = ul+uy(ta—t) forte J,.
Thus
o(u,) =o(ul)+ R
where
”RI L2(0,1) S Lok”uzt”LZ(o’l) — 0as n — 0.
So

n+1 .

2_((o(us),22)); = 2k(0(uy), Xa) + R

1=n

where R — 0 as n — oo. Thus (1) holds.

12

. Summing (2.1),

3

Thus, if {u"} or a subsequence tends to a limiting function, the latter must belong

to Cp. To see that {u"} converges, we proceed in two steps.
Proposition 3.3 Let {u"} be the sequence uniquely determined by
exists u' € C} and u > 0 depending on k the time step such that

nt1

o™ = w'l < pfle” — w7l

where [[v] = {|vllL2(0.1)-

(2.8). Then there

(3.3)
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Proof: Let (u™,v") denote the solution to (2.3) and let
r =v", 00 =u"—-u’ (3.4)
for some u” € C} to be determined. From (2.3)

P(upth) - P(uy)

(081, A) + k( T A) = (00, 0) + (uf, As)

Wt~ ug g
so that
(021 A) + (kD + 60750 X,) = (02, ) = (42, A;) (3.5)
where we denote D = o(u}) — (¥(ul*!) — ¥(ul))/(ul*! — ul}). Note that u* € C}
salisfies the discrete Buler-Lagrange equation. Choosing A = 02*! in (3.5) yields
(6571,85%Y) — (07, 65+") + 1001 = (kD, 033 + (05, 0571). (3.6)
Likewise " "
un — un vn + vn
(0 = (5
which with x = v"*! — v"™ becomes
0:+1 - 0: n+- n 1 n n
(B g ) = () - (0)7 )

or

n n n n-4 k n-< n 7" n n k n+
(01,01 = (0, 021) = S0P + (02,05") = (02,03) = S8 |

v?u u’ v u’t v

which we substitute into (3.6) and get

u,z

k(D,7*Y) + (07 _,6nt1) (3.7)

Yy, u,z’ " u,zr

k n n
SO+ e =

ulr”v udy

~(02,077) + (03,0 + Ll
(3.8)

Expanding ¥(ult!) about u” in a Taylor series; using the previously established
bounds on u?,ul*!, as well as noting |ul| < max{|s.|,|sv|}; and assuming ¢' is
Lipschitz gives the following inequality:

D] < C(10%,] +165%"1)

u,z
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where C is a constant. Applying the Schwarz inequality, the elementary inequality
(2zy < ex? + e 'y?, z,y,¢ > 0), and Poincaré’s inequality, we can absorb terms
involving superscripts n -+ 1 on the right hand side of (3.8} into similar terms on the
left and we arrive at

kNOTH® + 3100 1P < w(k) (kNOTI® + 3110507), vne N

which is (3.3) and 1 < u(k) < Ck™'/? independent of n.

Theorem 3.4 Let k < k* and (u",v") be the uniquely determined sequences from
(2.3). Then 3u” € C},

Jim (u”, v ) = (v",0) (3.9)
Procf: We adapt an argument in [23]. From (3.1.4i1), {|u"{|y1(0,1) is bounded and we
may extract a subsequence {u"} converging to some u” € Si. Because of (3.2.1),
lut! — u"|| — 0 as n — oco. Then also u™*! — u* as j — oo. Then (¢’(u:"+l) -
(ur))/(us’ — uz’) — 0 as j — oo and (0(u}),X;) = 0 following (3.2.17) so that
u* € C} and has to be one of the isolated points there. Let

Blw.d = {xe St lIx—ull<e)

and pick § < dp/2 (cf. Example 1.1) so that u’ is the unique element in CiNB(u", 26).
Let {u™} be a subsequence of {u"} such that {u™} C B(u",6/u). Then

{un "} C B(u', 6)

according to (3.3). We then distinguish between two mutually exclusive cases:

Case 1: 3I{u"*}reny € B(u',6)\B{u",6/u). Then this new subsequence must
have a limit in B(u*,8)\B(u",6/u) which contradicts that u* is the only element
in B(u",26) N CL
Case 2: (I {u™}ien € B(u',8)\B(v",6/u)). Then the entire sequence {u"}
converges to u”.

O
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4. Numerical Results

In this section we compute the solutions obtained by the CTG method in order to
clarifly our results, demonstrate the instability present in equilibrium values p where
o'(jt) < 0, and show that the large time solutions are dependent on both the mesh
and the initial data.

To implement the CTG scheme we eliminated the velocities from (2.3) to obtain

the following three-step method: Find {u"}2, C S, such that

! | -/ n-
/ (OFu"A + [Z(U(u'z‘,u:“) +6(ur " ul)) + duljA)dz =0 VYAeE S;,

where |
Otu™ = k2 (™! —2u™ + Y,
1
atun — ’2"1’(; (un+l o un-l).
G(u,v) = U)(U);M, and ¥'(u) = u(u — s;)(u — sp).
u—v

We factored the numerator in ¢ to eliminate u — v from the denominator. We have
assumed uniform time steps. To solve this nonlinear system on each time step we
used the following fixed point iteration where we searched for zU) — y™*1:

/‘(z““)/\ + lﬁz(”l))\,) dz

T

0
1 k
:/ {(2u™ = DX+ ul'A, ) dx
0 2
k2

F RNt 1

I .
Vo ) o w)r,de VA€ )
0

On each iteration the linear tridiagonal system of equations was solved by Gaussian
elimination. Since our primary interest was in the behaviour of solutions of (2.3) we
continued the iteration until |20+ — 200 || e < 107 rather than carry out a more
eflicient incomplete iteration procedure.

Figures 2, 3, and 4 show large time solutions (which we believe to be the final
states for these problems). In all these cases we took the final time as T = 40, the
number of time steps as N = 200, and initial data, specified completely at the nodes,
as

u%(z;) = u!(z;) = 107%sin(20z;) for j =0,1,--+,m.

We took m = 9,10,20 in Figures 2, 3, and 4, respectively. In all three cases we had

llo(ui)|Le <5 x 1071
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We conclude that cach of the large time solutions is significantly different and none
are close to the zero solution which does solve the Euler-Lagrange equation, but, is
apparently dynamically unstable.

I'igures 5, 6, and 7 show the approximation of the large time solutions of the
probiem with Dirichlet conditions at both endpoints. In each of these cases we took
T ~ 80, NV =400, and the initial data

u’(z) = 10""%sin(207x,) for j =0,1,...,m.

We took m = 9,10,20 in figures 4, 5, 6, respectively. In addition, we found P =
2078265621 + 5 x 10719, 323969547 + 5 x 10719, 0.0 = 5 x 107'% in the three cases.

We tried a larger number of timesteps in some of the cases above and found no
change in the steady state patterns formed.

A possible explanation of the instability of the zero solution was observed in {8]
by studving a linearized problem around zero. We do the same, as follows: Find
w = w(z.t) so

wy = 0" (0)wy + Wz

with
w(0,t) = wy(1,t) =0, t>0

and
w(z,0) = Up(z), wi(z,0) = Vy(z) in (0,1).

The solution has the form

w(z,t) = Z(Ane’\m + Bne* ) sin((2n — 1)nz)
n=1
where ] e
AE = 2(—(Zn —1)*n? & \/(Zn — 1)t — 40'(0)(2n — 1)%7?).
Thus
C,\,Tt o om0 (0)
et o' (0= g agn 0.

Thus the solution of the linearized system has a component which is growing expo-
nentially.

A similar procedure, although more complicated, can be carried out on the fully
discrete approximation problem to show the same results when & = ch where c is a
constant and h is sufficiently small.
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5. Concluding Remarks

We have shown that numerical solutions to the model problem (1.7) found by the
continuous time Galerkin scheme converge, as t — oo, to a numerical steady state,
as one would wish. If this time-dependent process is viewed as dynamic relaxation,
it is succesful at attaining steady states. We prove and observe though, as Silling
(3] observed for a two dimensional anti-plane shear problem, that these are highly
dependent on the mesh and initial data. We can also interpret our results as an
analysis of the large time behaviour of the Kelvin-Voigt model for viscous damping
using a general, systematic approach.




18

References

1]

2]

18]

(6]

7]

8]

[10]

[11]

C. A. Fellippa, “Dynamic Relaxation under General Increment Control”, in “In-
novative Methods for Nonlinear Probleias”, eds. W. K. Liu, T. Belytschko, K.
C. Park, Pineridge Press, 1984, pp. 103-133.

P. Gi. Underwood, “Dynamic Relaxation - A Review”, Ch.5 in “Computational
Method for Transient Dynamic Analysis”, eds. T. Belytschko and T. J. R.
Hughes, North-Holland, Amsterdam, 1983.

S. A. Silling, “Numerical Studies of Loss of Ellipticity Near Singularities in an
Elastic Matertal”, J. Elast., 19 (1988) no.3, pp. 213-239.

T. Belytschkn, P. Smolinski and W. K. Liu, “Multi-stepping Implicit-Explicit
Procedure in Transient Analysis™. in “Innovative Methods for Nonlinear Prob-
lems”™, ed. W. K. Liu, T. Belytschko and K. C. Park, Pineridge Press, 1984, pp.

135-153.

T. Belytschko and Z. P, Bazant, “Strain-softening and Finite Element Solutions”
in Constitutive Equations: Macro and Computational Aspects, ed. K. J. Willam,
ASME, 1984, pp. 253-272.

K. C. Park and P. G. Underwood. “A Variable-step Central Difference Method
for Structural Dynamics Analysis - Part 1. Theoretical Aspects”, Computer
Methods in Applied Mechanics and Engineering 22 (1980) 241-258.

J. L. Ericksen, “Equilibrium of Bars”, J. Elast. 5, (1975), 191-201.

G. Andrews and J. M. Ball, “Asymptotic Behaviour and Changes of phase in
One-Dimensional Nonlinear Viscoelasticity”, J. Diff. Egs. 44 (1982) 306-341.

R. L. Pego, “Phase Transitions in One-Dimensional Nonlinear Viscoelasticity:
Admissibility and Stability”, Arch. Rat’l Mech. and Anal., 97 (1987) 353-394.

L. C. Young, “Generalized curves and the existence of an attained absolute
minimum in the calculus of variations”, C. R. Soc. Sci. Lett. Varsovie, Classe
1H, 30 (1937) 212-234.

L. Tartar, “Compensated Compactness and Partial Differential Equations” in
Nonlinear Analysis and Mechanics”, Herriott Walt Symposium, ed. R. J Knops,
v.4, Pitman, 1979.




12]

[13]

[14]

[15]

[16]

[17]

(18]

19]

[20]

[21]

[22]

(23]

19

C. Collins and D. Kinderlehrer and M. Luskin, ” Numerical approximation of the
solution of a variational problem with a double well potential”, preprint, IMA,
Minnesota. 1989,

J. Bielak and R. MacCamy,” On the strength of mechanical and thermal damping
in linear materials”, Quart. Appl. Math., 47 (1989) pp. 555-570.

U.J. Choi and R. C. MacCamy, " Fractional order Volterra equations with appli-
cations to elasticity”, J. Math. Anal. and Appl. v. 139, no. 2 (1989) pv. 448-464.

M. Slemrod, " Admissibility criteria for propagating phase boundaries in a Van
der Waals fluid”, Arch. Rat'l Mech. Anal., 81 (1983) pp. 301-316.

S. Jensen and I. Babugka, “Dimensional Reduction for Nonlinear Boundary Value
Problems”, SIAM J. Num. Anal. 25 (1988) pp. 644-669.

J. M. Greenberg, R. C. MacCamy and V. J. Mizel, “On the Existence, Uniqueness
and Stability of Solutions of the Equation ¢'(uz)uzz + Augs = pous”, J. Math.
Mech. 17 (1968) 707-728.

J. M. Greenberg, “On the Existence, Uniqueness and Stability of Solutions of the
Equation po Xy = L(X;) X2z + AX;5", J. Math. Anal. Appl. 25 (1969) 575-591.

J. M. Greenberg and R. C. MacCamy “On the Exponential Stability of Solutions
of E(uz)uzs + Aug, = puy,”, J. Math. Anal. Appl. 31 (1970) 406-417.

D. A. French “On the Convergence of Finite Element Approximations of a Re-
laxed Variational Problem”, To appear in SIAM J. Numer. Anal.

J. M. Ball and F. Murat “W!?-quasiconvexity and variational problems for mul-
tiple integral”, J. Funct. Anal., 58 (1989), pp. 225-253.

D. A. French and J. W. Schaeffer “Continuous finite element methods which
preserve energy properties for nonlinear problems” (submitted to Appl. Math.
and Comp.).

C. M. Elliott “The Cahn-Hilliard model for the kinetics of phase separation”
in “Math. Models for Phase Change Problems” ed. J. F. Rodrigues, Birhauser
Verlag, 1989.




S
a | 0 T- S
I T T _ N‘
— - ﬂ'
1
1 - i ] N
UTBJI}S "SA SS9I3S
S
a I 0 T- g—
y _ _ 0
\\\»ﬁ.wm 1Hm
\\
\
-\ {e0
1 NAAUL 1 ‘H
Saouy




‘posn 1w sdaisowin GO Jo

{2101 ® pue aveds ul speasdnui ysaw (] 232w 313y ], 143t 33 1¥ uonIpuod ondesy pue jutodpua
3L AP ' UOBIPUOd YW qutm (171} w3[qozd 01 *¥n tuonnjos arewrxosddy ¢ aanSrg

o€ 9-

02" G-

Q0" 0

‘pasn alam sdaisawn Q0T

Jo (€101 v pue axeds Ul S[eAlajul ysow § alam 312yl -34St 241 3 UONIPUCI yorydRI1 puR julod pud
1J9] 91 Te BOUIPUOd WY ® Yitm (2°1) wajqord o1 *¥n ‘uonnjos aewnoiddy T anSig

080 0%°0 or-o

T oc'o-

T oto-

T ote-

[l

T or'0

(L*)¥n




1wrodpua yoea ye suonrpuosy

.

BLOT = o POSR Atum sdorsowny 9oy Jo ot v pue wouds v SIUA LT SOt i vy |

L

(] Yt {

Phuaggosd o3 " VYr tuonnjos sviexosddy G vinfig

[N

(2

[

o] ey

1

Pasn dow sdaiown 00Z Jo
w2541 1931 341 1 Doutpuss uon e puv jutod pua
HORIPUAI LI R gatm (7)) ui2iqosd o3 *Yn ‘Lonnjos Newixosddy ¢ sanBry

: aeds e

Adayut ysaur Oz aza

—+ cvo-
. T oto-

- otl'o-

7 N
/ < VA

(L-)¥n




00 = 4 PSD Ada sduisow OO JO [R103 ¢ puve areds ut SfeAtauL Gsuw (g

1u10dpua Y322 T SUOLIPUOD 1Y I Yitm {2

|

D |

[) wa|qosd o1 *¥n ‘wonnjos aeunrxoidd v

e
< H'
-~
{ ©
<;\ |
>
.

. (’// \
>
>
\\:

i
’1
el
~.
N
i

RN L N

N\ an .r.w

[

Lo

11 = 4 PUSD dlom $ds1saWN QP JO (€103 © pUE
JUI0d pUR Y2va 1 SUOHIIPUOD 1[I Yitm (21) wa|qoid 01

— [lu| |-||. \»
I
!
i
: 4
]
j
i
1
,1\ —_
|
\
ce o 0y 0 or 0 00
, | y ——
L P | t
I
/
/
/4
I \
AN N
| N/ ; |
N /
! /
W /

2ouds UL S[RAId(U! (S O] II9M A
‘¥ ‘vonnjos ajrwnxorddy 9 3andig

o0~

0z o-

o1 o~

00°0

ol ¢

or-o

198 ]




